Achieving “Non-Foaming” Rhamnolipid Production and Productivity Rebounds of Pseudomonas aeruginosa under Weakly Acidic Fermentation

The rhamnolipid production of Pseudomonas aeruginosa has been impeded by its severe foaming; overcoming the bottleneck of foaming has become the most urgent requirement for rhamnolipid production in recent decades. In this study, we performed rhamnolipid fermentation under weakly acidic conditions t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2022-05, Vol.10 (6), p.1091
Hauptverfasser: Gong, Zhijin, He, Qiuhong, Liu, Jinfeng, Zhou, Jing, Che, Chengchuan, Si, Meiru, Yang, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rhamnolipid production of Pseudomonas aeruginosa has been impeded by its severe foaming; overcoming the bottleneck of foaming has become the most urgent requirement for rhamnolipid production in recent decades. In this study, we performed rhamnolipid fermentation under weakly acidic conditions to address this bottleneck. The results showed that the foaming behavior of rhamnolipid fermentation broths was pH-dependent with the foaming ability decreasing from 162.8% to 28.6% from pH 8 to 4. The “non-foaming” rhamnolipid fermentation can be realized at pH 5.5, but the biosynthesis of rhamnolipids was significantly inhibited. Further, rhamnolipid yield rebounded from 8.1 g/L to 15.4 g/L after ultraviolet and ethyl methanesulfonate compound mutagenesis. The mechanism study showed that the species changes of rhamnolipid homologs did not affect the foaming behavior of the fermentation but had a slight effect on the bioactivity of rhamnolipids. At pH 8.0 to 5.0, increased surface tension, decreased viscosity and zeta potential, and aggregation of rhamnolipid molecules contributed to the “non-foaming” rhamnolipid fermentation. This study provides a promising avenue for the “non-foaming” rhamnolipid fermentation and elucidates the mechanisms involved, facilitating the understanding of pH-associated foaming behavior and developing a more efficient strategy for achieving rhamnolipid production.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms10061091