Co-seismic surface effects from very high resolution panchromatic images: the case of the 2005 Kashmir (Pakistan) earthquake
The use of Very High Resolution (VHR) satellite panchromatic image is nowadays an effective tool to detect and investigate surface effects of natural disasters. We specifically examined the capabilities of VHR images to analyse earthquake features and detect changes based on the combination of visua...
Gespeichert in:
Veröffentlicht in: | Natural hazards and earth system sciences 2011-01, Vol.11 (3), p.931-943 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of Very High Resolution (VHR) satellite panchromatic image is nowadays an effective tool to detect and investigate surface effects of natural disasters. We specifically examined the capabilities of VHR images to analyse earthquake features and detect changes based on the combination of visual inspection and automatic classification tools. In particular, we have used Quickbird (0.6 m spatial resolution) images for detecting the three main co-seismic surface features: damages, ruptures and landslides. The present approach has been applied to the 8 October 2005, Mw7.6 Kashmir, Pakistan, earthquake. We have focused our study in and around the main urban areas hit by the above earthquake specifically at Muzaffarabad and Balakot towns. The automatic classification techniques provided the best results wherever dealing with the damage to man-made structures and landslides. On the other hand, the visual inspection method demonstrated in addressing the identification of rupture traces and associated features. The synoptic view (concerning landslide, more than 190 millions of pixels have been automatically classified), the spatiotemporal sampling and the fast automatic damage detection using satellite images provided a reliable contribution to the prompt response during natural disaster and for the evaluation of seismic hazard as well. |
---|---|
ISSN: | 1684-9981 1561-8633 1684-9981 |
DOI: | 10.5194/nhess-11-931-2011 |