A Hybrid Structure of Piezoelectric Fibers and Soft Materials as a Smart Floatable Open-Water Wave Energy Converter

An open-water wave energy converter (OWEC) made of a new soft platform has been developed by combining piezoelectric macro-fiber composites (MFCs) and a low-cost elastomer. In the past decades, numerous types of water wave energy conversion platform have been developed and investigated, from buoys t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2021-10, Vol.12 (10), p.1269
Hauptverfasser: Baghbani Kordmahale, Sina, Do, Jitae, Chang, Kuang-An, Kameoka, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An open-water wave energy converter (OWEC) made of a new soft platform has been developed by combining piezoelectric macro-fiber composites (MFCs) and a low-cost elastomer. In the past decades, numerous types of water wave energy conversion platform have been developed and investigated, from buoys to overtopping devices. These harvesters mainly use electromagnetic-based generators, and they have faced challenges such as their enormous size, high deployment and maintenance costs, and negative effects on the environment. These problems hinder their practicality and competitiveness. In this paper, a soft open-water wave energy converter is introduced which integrates piezoelectric MFCs and bubble wrap into an elastomer sheet. The performance of the OWEC was investigated in a wave flume as a floatable structure. The maximum 29.7 µW energy harvested from the small OWEC represents a promising energy conversion performance at low frequencies (
ISSN:2072-666X
2072-666X
DOI:10.3390/mi12101269