An Overview of Image Generation of Industrial Surface Defects

Intelligent defect detection technology combined with deep learning has gained widespread attention in recent years. However, the small number, and diverse and random nature, of defects on industrial surfaces pose a significant challenge to deep learning-based methods. Generating defect images can e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-09, Vol.23 (19), p.8160
Hauptverfasser: Zhong, Xiaopin, Zhu, Junwei, Liu, Weixiang, Hu, Chongxin, Deng, Yuanlong, Wu, Zongze
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intelligent defect detection technology combined with deep learning has gained widespread attention in recent years. However, the small number, and diverse and random nature, of defects on industrial surfaces pose a significant challenge to deep learning-based methods. Generating defect images can effectively solve this problem. This paper investigates and summarises traditional defect generation and deep learning-based methods. It analyses the various advantages and disadvantages of these methods and establishes a benchmark through classical adversarial networks and diffusion models. The performance of these methods in generating defect images is analysed through various indices. This paper discusses the existing methods, highlights the shortcomings and challenges in the field of defect image generation, and proposes future research directions. Finally, the paper concludes with a summary.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23198160