Protective Role of Indole-3-Acetic Acid Against Salmonella Typhimurium: Inflammation Moderation and Intestinal Microbiota Restoration

Indole-3-acetic acid (IAA), a metabolite derived from microbial tryptophan metabolism, plays a crucial role in regulating intestinal homeostasis. However, the influence and potential applications of IAA in the context of animal pathogen infections remain underexplored. This study investigates the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2024-11, Vol.12 (11), p.2342
Hauptverfasser: Fan, Yuxin, Song, Qinglong, Li, Siyu, Tu, Jiayu, Yang, Fengjuan, Zeng, Xiangfang, Yu, Haitao, Qiao, Shiyan, Wang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Indole-3-acetic acid (IAA), a metabolite derived from microbial tryptophan metabolism, plays a crucial role in regulating intestinal homeostasis. However, the influence and potential applications of IAA in the context of animal pathogen infections remain underexplored. This study investigates the prophylactic effects of IAA pretreatment against typhimurium (ST) SL1344 infection, focusing on its ability to attenuate inflammatory responses, enhance intestinal barrier integrity, inhibit bacterial colonization, and restore colonic microbiota dysbiosis. The results demonstrated that IAA ameliorated the clinical symptoms in mice, as evidenced by reduced weight loss and histopathological damage. Furthermore, IAA inhibited the inflammatory response by downregulating the gene expression of pro-inflammatory cytokines , , , and in colon, ileum, and liver. IAA also preserved the integrity of the intestinal mucosal barrier and promoted the expression of tight junction proteins. Additionally, 16S rRNA gene sequencing revealed significant alterations in intestinal microbiota structure induced by ST infection following IAA treatment. Notable changes in β diversity and species richness were characterized by the enrichment of beneficial bacteria including Bacteroideaceae, Spirillaceae, and Bacillus. The proliferation of subspecies serovar Typhi was significantly inhibited, thereby enhancing the intestinal health of the host. In summary, the oral administration of IAA contributes to the alleviation of inflammation, restoration of the intestinal barrier, and correction of colonic microbiota disturbance in mice challenged with ST.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms12112342