Establishing a stable, repeatable platform for measuring changes in sperm DNA methylation

Several independent research groups have shown that alterations in human sperm methylation profiles correlate with decreased fecundity and an increased risk of poor embryo development. Moving these initial findings from the lab into a clinical setting where they can be used to measure male infertili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical epigenetics 2018-09, Vol.10 (1), p.119-119, Article 119
Hauptverfasser: Abbasi, Mohammad, Smith, Andrew D, Swaminathan, Harish, Sangngern, Peer, Douglas, Amanda, Horsager, Alan, Carrell, Douglas T, Uren, Philip J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several independent research groups have shown that alterations in human sperm methylation profiles correlate with decreased fecundity and an increased risk of poor embryo development. Moving these initial findings from the lab into a clinical setting where they can be used to measure male infertility though requires a platform that is stable and robust against batch effects that can occur between sample runs. Operating parameters must be established, performance characteristics determined, and guidelines set to ensure repeatability and accuracy. The standard for technical validation of a lab developed test (LDT) in the USA comes from the Clinical Laboratory Improvement Amendments (CLIA). However, CLIA was introduced in 1988, before the advent of genome-wide profiling and associated computational analysis. This, coupled with its intentionally general nature, makes its interpretation for epigenetic assays non-trivial. Here, we present an interpretation of the CLIA technical validation requirements for profiling DNA methylation and calling aberrant methylation using the Illumina Infinium platform (e.g., the 450HM and MethylationEPIC). We describe an experimental design to meet these requirements, the experimental results obtained, and the operating parameters established. The CLIA guidelines, although not intended for high-throughput assays, can be interpreted in a way that is consistent with modern epigenetic assays. Based on such an interoperation, Illumina's Infinium platform is quite amenable to usage in a clinical setting for diagnostic work.
ISSN:1868-7075
1868-7083
1868-7083
1868-7075
DOI:10.1186/s13148-018-0551-7