Origin of Salt Effects in SN2 Fluorination Using KF Promoted by Ionic Liquids: Quantum Chemical Analysis
Quantum chemical analysis is presented, motivated by Grée and co-workers’ observation of salt effects [Adv. Synth. Catal. 2006, 348, 1149–1153] for SN2 fluorination of KF in ionic liquids (ILs). We examine the relative promoting capacity of KF in [bmim]PF6 vs. [bmim]Cl by comparing the activation ba...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2021-09, Vol.26 (19), p.5738 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Quantum chemical analysis is presented, motivated by Grée and co-workers’ observation of salt effects [Adv. Synth. Catal. 2006, 348, 1149–1153] for SN2 fluorination of KF in ionic liquids (ILs). We examine the relative promoting capacity of KF in [bmim]PF6 vs. [bmim]Cl by comparing the activation barriers of the reaction in the two ILs. We also elucidate the origin of the experimentally observed additional rate acceleration in IL [bmim]PF6 achieved by adding KPF6. We find that the anion PF6− in the added salt acts as an extra Lewis base binding to the counter-cation K+ to alleviate the strong Coulomb attractive force on the nucleophile F−, decreasing the Gibbs free energy of activation as compared with that in its absence, which is in good agreement with experimental observations of rate enhancement. We also predict that using 2 eq. KF together with an eq. KPF6 would further activate SN2 fluorination |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules26195738 |