Aqueous-Based Binary Sulfide Nanoparticle Inks for Cu2ZnSnS4 Thin Films Stabilized with Tin(IV) Chalcogenide Complexes
Cu2ZnSnS4 (CZTS) is a promising semiconductor material for photovoltaic applications, with excellent optical and electronic properties while boasting a nontoxic, inexpensive, and abundant elemental composition. Previous high-quality CZTS thin films often required either vacuum-based deposition proce...
Gespeichert in:
Veröffentlicht in: | Nanomaterials (Basel, Switzerland) Switzerland), 2019-09, Vol.9 (10), p.1382 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cu2ZnSnS4 (CZTS) is a promising semiconductor material for photovoltaic applications, with excellent optical and electronic properties while boasting a nontoxic, inexpensive, and abundant elemental composition. Previous high-quality CZTS thin films often required either vacuum-based deposition processes or the use of organic ligands/solvents for ink formulation, which are associated with various issues regarding performance or economic feasibility. To address these issues, an alternative method for depositing CZTS thin films using an aqueous-based nanoparticle suspension is demonstrated in this work. Nanoparticles of constituent binary sulfides (CuxS and ZnS) are stabilized in an ink using tin(IV)-based, metal chalcogenide complexes such as [Sn2S6]4−. This research paper provides a systematic study of the nanoparticle synthesis and ink formulation via the enabling role of the tin chalcogenide complexing power, the deposition of high-quality CZTS thin films via spin coating and annealing under sulfur vapor atmosphere, their structural characterization in terms of nanocrystal phase, morphology, microstructure, and densification, and their resultant optoelectronic properties. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano9101382 |