Trion fine structure and coupled spin–valley dynamics in monolayer tungsten disulfide

Monolayer transition-metal dichalcogenides have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. The optical properties of these two-dimensional crystals are dominated by tightly bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-09, Vol.7 (1), p.12715-12715, Article 12715
Hauptverfasser: Plechinger, Gerd, Nagler, Philipp, Arora, Ashish, Schmidt, Robert, Chernikov, Alexey, del Águila, Andrés Granados, Christianen, Peter C.M., Bratschitsch, Rudolf, Schüller, Christian, Korn, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monolayer transition-metal dichalcogenides have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. The optical properties of these two-dimensional crystals are dominated by tightly bound electron–hole pairs (excitons) and more complex quasiparticles such as charged excitons (trions). Here we investigate monolayer WS 2 samples via photoluminescence and time-resolved Kerr rotation. In photoluminescence and in energy-dependent Kerr rotation measurements, we are able to resolve two different trion states, which we interpret as intravalley and intervalley trions. Using time-resolved Kerr rotation, we observe a rapid initial valley polarization decay for the A exciton and the trion states. Subsequently, we observe a crossover towards exciton–exciton interaction-related dynamics, consistent with the formation and decay of optically dark A excitons. By contrast, resonant excitation of the B exciton transition leads to a very slow decay of the Kerr signal. Monolayer transition metal dichalcogenides are promising materials for valleytronics applications. Here, the authors study WS 2 samples using photoluminescence spectroscopy and time-resolved Kerr-rotation measurements at low temperatures, gaining insight into the valley dynamics of excitons.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms12715