Phytochemical Characterization of Purple Coneflower Roots ( Echinacea purpurea (L.) Moench.) and Their Extracts
is a perennial plant that belongs to the Asteraceae family. It has a wide range of applications mainly in the treatment and prevention of inflammations in the respiratory system. The current study aimed to perform a phytochemical characterization of purple coneflower ( ) roots and their extracts (wa...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2023-05, Vol.28 (9), p.3956 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | is a perennial plant that belongs to the Asteraceae family. It has a wide range of applications mainly in the treatment and prevention of inflammations in the respiratory system. The current study aimed to perform a phytochemical characterization of purple coneflower (
) roots and their extracts (water, 40%, 50%, 60% ethanol, and 60% glycerol). Phytochemical characterization was carried out by gravimetric, spectrophotometric, and chromatographic methods.
roots were characterized by a low lipid (0.8%) content. In contrast, carbohydrates (45%) and proteins (20%) occupied a large part of the dry matter. Amongst the extracts, the highest yield was obtained using water as a solvent (53%). Water extract was rich in protein and carbohydrates as fructans (inulin) were the most abundant carbohydrate constituent. The most exhaustive recovery of the phenolic components was conducted by extraction with 40% ethanol and 60% glycerol. It was found that water is the most suitable extractant for obtaining a polysaccharide-containing complex (PSC) (8.87%). PSC was composed mainly of fructans (inulin) and proteins with different molecular weight distributions. The yield of PSC decreased with an increasing ethanol concentration (40% > 50% > 60%) but the lowest yield was obtained from 60% glycerol extract. The obtained results showed that
roots contained a large amount of biologically active substances-phenolic components and polysaccharides and that glycerol was equally efficient to ethanol in extracting caffeic acid derivatives from purple coneflower roots. The data can be used for the preparation of extracts having different compositions and thus easily be incorporated into commercial products. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28093956 |