Computational analysis of the interaction between transcription factors and the predicted secreted proteome of the yeast Kluyveromyces lactis

Protein secretion is a cell translocation process of major biological and technological significance. The secretion and downstream processing of proteins by recombinant cells is of great commercial interest. The yeast Kluyveromyces lactis is considered a promising host for heterologous protein produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics 2009-06, Vol.10 (1), p.194-194, Article 194
Hauptverfasser: Brustolini, Otávio J B, Fietto, Luciano G, Cruz, Cosme D, Passos, Flávia M L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Protein secretion is a cell translocation process of major biological and technological significance. The secretion and downstream processing of proteins by recombinant cells is of great commercial interest. The yeast Kluyveromyces lactis is considered a promising host for heterologous protein production. Because yeasts naturally do not secrete as many proteins as filamentous fungi, they can produce secreted recombinant proteins with few contaminants in the medium. An ideal system to address the secretion of a desired protein could be exploited among the native proteins in certain physiological conditions. By applying algorithms to the completed K. lactis genome sequence, such a system could be selected. To this end, we predicted protein subcellular locations and correlated the resulting extracellular secretome with the transcription factors that modulate the cellular response to a particular environmental stimulus. To explore the potential Kluyveromyces lactis extracellular secretome, four computational prediction algorithms were applied to 5076 predicted K. lactis proteins from the genome database. SignalP v3 identified 418 proteins with N-terminal signal peptides. From these 418 proteins, the Phobius algorithm predicted that 176 proteins have no transmembrane domains, and the big-PI Predictor identified 150 proteins as having no glycosylphosphatidylinositol (GPI) modification sites. WoLF PSORT predicted that the K. lactis secretome consists of 109 putative proteins, excluding subcellular targeting. The transcription regulators of the putative extracellular proteins were investigated by searching for DNA binding sites in their putative promoters. The conditions to favor expression were obtained by searching Gene Ontology terms and using graph theory. A public database of K. lactis secreted proteins and their transcription factors are presented. It consists of 109 ORFs and 23 transcription factors. A graph created from this database shows 134 nodes and 884 edges, suggesting a vast number of relationships to be validated experimentally. Most of the transcription factors are related to responses to stress such as drug, acid and heat resistance, as well as nitrogen limitation, and may be useful for inducing maximal expression of potential extracellular proteins.
ISSN:1471-2105
1471-2105
DOI:10.1186/1471-2105-10-194