Siponimod ameliorates experimental autoimmune neuritis

Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are human autoimmune peripheral neuropathy. Besides humoral immunity, cellular immunity is also believed to contribute to these pathologies, especially CIDP. Sphingosine-1-phosphate receptor 1 (S1PR1) regulate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroinflammation 2023-02, Vol.20 (1), p.35-35, Article 35
Hauptverfasser: Uchi, Takafumi, Konno, Shingo, Kihara, Hideo, Fujioka, Toshiki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are human autoimmune peripheral neuropathy. Besides humoral immunity, cellular immunity is also believed to contribute to these pathologies, especially CIDP. Sphingosine-1-phosphate receptor 1 (S1PR1) regulates the maturation, migration, and trafficking of lymphocytes. As of date, the therapeutic effect of sphingosine-1-phosphate receptor (S1PR) agonists on patients with GBS or CIDP remains unclear. To evaluate the effect of siponimod, an agonist of S1PR1 and S1PR5, on experimental autoimmune neuritis (EAN), an animal model of autoimmune peripheral neuropathy, was used. Lewis rats were immunized with 125 μg of synthetic peptide from bovine P2 protein. Rats in the siponimod group were orally administered 1.0 mg/kg siponimod and those in the EAN group were administrated the vehicle on days 5-27 post-immunization (p.i.) daily. The symptom severity was recorded daily. The changes in the expression of cytokines and transcription factors in the lymph nodes and cauda equina (CE) which correlate with the pathogenesis of EAN and recovery of injured nerve were measured using reverse transcription quantitative PCR. Histological study of CE was also performed. Flaccid paralysis developed on day 11 p.i. in both groups. Siponimod relieved the symptom severity and decreased the expression of interferon-gamma and IL-10 mRNAs in lymph nodes and CE compared with that in the EAN group. The expression of Jun proto-oncogene (c-Jun) mRNA increased from the peak to the recovery phase and that of Sonic hedgehog signaling molecule (Shh) and Glial cell line-derived neurotrophic factor (Gdnf) increased prior to increase in c-Jun with no difference observed between the two groups. Histologically, siponimod also reduced demyelinating lesions and inflammatory cell invasion in CE. Siponimod has a potential to ameliorate EAN. Shh and Gdnf, as well as C-Jun played a significant role during the recovery of injured nerves.
ISSN:1742-2094
1742-2094
DOI:10.1186/s12974-023-02706-z