Diagnosis and Prediction for Loss of Coolant Accidents in Nuclear Power Plants Using Deep Learning Methods
A combination of Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM), and Convolutional LSTM (ConvLSTM) is constructed in this work for the fault diagnosis and post-accident prediction for Loss of Coolant Accidents (LOCAs) in Nuclear Power Plants (NPPs). The advantages of ConvLSTM, suc...
Gespeichert in:
Veröffentlicht in: | Frontiers in energy research 2021-05, Vol.9 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A combination of Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM), and Convolutional LSTM (ConvLSTM) is constructed in this work for the fault diagnosis and post-accident prediction for Loss of Coolant Accidents (LOCAs) in Nuclear Power Plants (NPPs). The advantages of ConvLSTM, such as effective feature determination and extraction, are applied to the classification of LOCA cases. The prediction accuracy is enhanced via the collaborative work of CNN and LSTM. Such a hybrid model is proved to be functional, accurate, and adaptive, offering quick accident judgment and a reliable decision basis for the emergency response purpose. It then allows NPPs to have an Artificial Intelligence (AI)-based solution for fault diagnosis and post-accident prediction. |
---|---|
ISSN: | 2296-598X 2296-598X |
DOI: | 10.3389/fenrg.2021.665262 |