Rotation Invariant Graph Neural Network for 3D Point Clouds
In this paper we propose a novel rotation normalization technique for point cloud processing using an oriented bounding box. We use this method to create a point cloud annotation tool for part segmentation on real camera data. Custom data sets are used to train our network for classification and par...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-03, Vol.15 (5), p.1437 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we propose a novel rotation normalization technique for point cloud processing using an oriented bounding box. We use this method to create a point cloud annotation tool for part segmentation on real camera data. Custom data sets are used to train our network for classification and part segmentation tasks. Successful deployment is completed on an embedded device with limited processing power. A comparison is made with other rotation-invariant features in noisy synthetic datasets. Our method offers more auxiliary information related to the dimension, position, and orientation of the object than previous methods while performing at a similar level. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15051437 |