Constraining Anisotropic Diffusion between Geminga and Earth with the Cosmic-Ray Electron and Positron Spectrum

The gamma-ray halo around Geminga indicates significant suppression of cosmic-ray diffusion. One possible explanation for this phenomenon is the projection effect of slow diffusion perpendicular to the mean magnetic field (characterized by the diffusion coefficient D ⊥ ) within an anisotropic diffus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2025-01, Vol.978 (2), p.162
Hauptverfasser: Xia, Junji, Bi, Xiaojun, Fang, Kun, Liu, Siming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The gamma-ray halo around Geminga indicates significant suppression of cosmic-ray diffusion. One possible explanation for this phenomenon is the projection effect of slow diffusion perpendicular to the mean magnetic field (characterized by the diffusion coefficient D ⊥ ) within an anisotropic diffusion framework. In this scenario, the diffusion coefficient parallel to the mean field ( D ∥ ) can still be large, enabling electrons and positrons ( e ± ) produced by Geminga to efficiently travel to Earth along the magnetic field lines, possibly resulting in a detectable e ± flux. In this work, we first determine the basic parameters of the anisotropic model using the morphology and spectral measurements of the Geminga halo and then predict the flux of e ± produced by Geminga at the location of Earth. We find that the e −  +  e + spectrum of DAMPE can give crucial constraint on the anisotropic diffusion model: to ensure that the predicted spectrum does not exceed the measurements, the Alfvén Mach number of the turbulent magnetic field ( M A ) should not be less than 0.75, corresponding to D ∥ / D ⊥  ≲ 3 given that D ⊥ = D ∥ M A 4 . This implies that a significant suppression of D ∥ relative to the average value in the Galaxy may still be necessary. Furthermore, we find that under the anisotropic diffusion model, Geminga can produce a very sharp feature around 1 TeV in the e −  +  e + spectrum, which could naturally explain the peculiar 1.4 TeV excess tentatively observed by DAMPE.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ad9d39