Knocking out alpha-synuclein in melanoma cells downregulates L1CAM and decreases motility

The Parkinson’s disease (PD) associated protein, alpha-synuclein (α-syn/ SNCA ), is highly expressed in aggressive melanomas. The goal of this study was to reveal possible mechanism(s) of α-syn involvement in melanoma pathogenesis. Herein, we asked whether α-syn modulates the expression of the pro-o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-06, Vol.13 (1), p.9243-9243, Article 9243
Hauptverfasser: Gajendran, Nithya, Rajasekaran, Santhanasabapathy, Witt, Stephan N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Parkinson’s disease (PD) associated protein, alpha-synuclein (α-syn/ SNCA ), is highly expressed in aggressive melanomas. The goal of this study was to reveal possible mechanism(s) of α-syn involvement in melanoma pathogenesis. Herein, we asked whether α-syn modulates the expression of the pro-oncogenic adhesion molecules L1CAM and N-cadherin. We used two human melanoma cell lines (SK-MEL-28, SK-MEL-29), SNCA -knockout (KO) clones, and two human SH-SY5Y neuroblastoma cell lines. In the melanoma lines, loss of α-syn expression resulted in significant decreases in the expression of L1CAM and N-cadherin and concomitant significant decreases in motility. On average, there was a 75% reduction in motility in the four SNCA -KOs tested compared to control cells. Strikingly, comparing neuroblastoma SH-SY5Y cells that have no detectable α-syn to SH-SY5Y cells that stably express α-syn (SH/+αS), we found that expressing α-syn increased L1CAM and single-cell motility by 54% and 597%, respectively. The reduction in L1CAM level in SNCA -KO clones was not due to a transcriptional effect, rather we found that L1CAM is more efficiently degraded in the lysosome in SNCA -KO clones than in control cells. We propose that α-syn is pro-survival to melanoma (and possibly neuroblastoma) because it promotes the intracellular trafficking of L1CAM to the plasma membrane.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-36451-3