Effects of chromium stress on the rhizosphere microbial community composition of Cyperus alternifolius
Wetland plants are often used as the main body of soil, and the rhizosphere is a hot spot migration and transformation. Response mechanism to rhizosphere microorganisms on chromium(Cr) stressing could help improve the phytoremediation system. Cyperus alternifolius(CA) is selected as the research obj...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology and environmental safety 2021-07, Vol.218, p.112253-112253, Article 112253 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wetland plants are often used as the main body of soil, and the rhizosphere is a hot spot migration and transformation. Response mechanism to rhizosphere microorganisms on chromium(Cr) stressing could help improve the phytoremediation system. Cyperus alternifolius(CA) is selected as the research object by Cr-stress treatments and uncontaminated treatments with different cultivated pattern, included sole cultivated pattern(CAI), two-cultivated pattern (CAII), three-cultivated pattern (CAIII), and the un-planted blank samples (CK). 16s rRNA gene sequencing and metagenomic sequencing are performed to measure rhizosphere microbial community. And Five common enzymes in rhizosphere soils were observed: β-1,4-glucosidase (BG), β-N-acetylglucosaminidase (NAG), β-1,4-xylosidase (BX), cellobiohydrolase (CBH) and Leucine amino peptidase (LAP) in the rhizosphere. The results show that Gammaproteobacteria, Actinobacteria, Alphaproteobacteria, Gemmatimonadetes, Deltaproteobacteria are top five (63.97%) of the total sequence number. Wetland plants enriched a large amount of soil Cr in themselves, and the rhizosphere microorganisms don’t show significant difference in community structure after affecting. 10.48% variation of microbial community is caused by Cr-stress. Acidovorax showed a great potential for chromium resistance. BX involvement in tolerance processes indirectly affects microbial communities (P |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2021.112253 |