Nitrogen management in wheat based on the normalized difference vegetation index (NDVI)
Biomass production and nitrogen (N) accumulated in wheat shoots may be used for quantifying optimal topdressing nitrogen doses. The objective of this study was to develop and validate models for estimating the amount of biomass and nitrogen accumulated in shoots and the N topdressing dose of maximum...
Gespeichert in:
Veröffentlicht in: | Ciência rural 2018-01, Vol.48 (9) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biomass production and nitrogen (N) accumulated in wheat shoots may be used for quantifying optimal topdressing nitrogen doses. The objective of this study was to develop and validate models for estimating the amount of biomass and nitrogen accumulated in shoots and the N topdressing dose of maximum technical efficiency in wheat using the normalized difference vegetation index (NDVI) measured by an active optical canopy sensor. Field experiments were carried out in two years and treatments consisted of N doses applied at plant emergence and as topdressing. NDVI, shoot biomass and N accumulated in shoots at the growth stage of six fully expanded leaves and grain yield were evaluated, being determined the topdressing N dose of maximum technical efficiency (DMTE). The NDVI was positively correlated to shoot biomass and N content in shoots and models for the relationship between these variables were developed and validated. The DMTE was negatively correlated with the NDVI value evaluated at the moment of N topdressing application. Thus, NDVI evaluation by an active optical canopy sensor can be used for nitrogen fertilization in variable rate, allowing the adjustment of applied N doses in different areas within a field. |
---|---|
ISSN: | 0103-8478 1678-4596 1678-4596 |
DOI: | 10.1590/0103-8478cr20170743 |