Superionic effect and anisotropic texture in Earth’s inner core driven by geomagnetic field

Seismological observations suggest that Earth’s inner core (IC) is heterogeneous and anisotropic. Increasing seismological observations make the understanding of the mineralogy and mechanism for the complex IC texture extremely challenging, and the driving force for the anisotropic texture remains u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-03, Vol.14 (1), p.1656-1656, Article 1656
Hauptverfasser: Sun, Shichuan, He, Yu, Yang, Junyi, Lin, Yufeng, Li, Jinfeng, Kim, Duck Young, Li, Heping, Mao, Ho-kwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Seismological observations suggest that Earth’s inner core (IC) is heterogeneous and anisotropic. Increasing seismological observations make the understanding of the mineralogy and mechanism for the complex IC texture extremely challenging, and the driving force for the anisotropic texture remains unclear. Under IC conditions, hydrogen becomes highly diffusive like liquid in the hexagonal-close-packed (hcp) solid Fe lattice, which is known as the superionic state. Here, we reveal that H-ion diffusion in superionic Fe-H alloy is anisotropic with the lowest barrier energy along the c-axis. In the presence of an external electric field, the alignment of the Fe-H lattice with the c-axis pointing to the field direction is energetically favorable. Due to this effect, Fe-H alloys are aligned with the c-axis parallel to the equatorial plane by the diffusion of the north–south dipole geomagnetic field into the inner core. The aligned texture driven by the geomagnetic field presents significant seismic anisotropy, which explains the anisotropic seismic velocities in the IC, suggesting a strong coupling between the IC structure and geomagnetic field. Earth’s inner core is heterogeneous and anisotropic. A new study based on computational simulation reveals the presence of ionic hydrogen flux in iron crystals, driven by the dipole geomagnetic field, which promotes the formation of observed inner core structure.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37376-1