On (m,n)-Derivations of Some Algebras

Let A be a unital algebra, δ be a linear mapping from A into itself and m, n be fixed integers. We call δ an (m, n)-derivable mapping at Z, if mδ(AB) + nδ(BA) = mδ(A)B + mAδ(B) + nδ(B)A for all A,B ∈ A with AB = Z. In this paper, (m, n)-derivable mappings at 0 (resp. I A ⊕ 0, I) on generalized matri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Demonstratio mathematica 2014-07, Vol.47 (3), p.672-694
Hauptverfasser: Shen, Qihua, Li, Jiankui, Guo, Jianbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A be a unital algebra, δ be a linear mapping from A into itself and m, n be fixed integers. We call δ an (m, n)-derivable mapping at Z, if mδ(AB) + nδ(BA) = mδ(A)B + mAδ(B) + nδ(B)A for all A,B ∈ A with AB = Z. In this paper, (m, n)-derivable mappings at 0 (resp. I A ⊕ 0, I) on generalized matrix algebras are characterized. We also study (m, n)-derivable mappings at 0 on CSL algebras. We reveal the relationship between this kind of mappings with Lie derivations, Jordan derivations and derivations.
ISSN:0420-1213
2391-4661
DOI:10.2478/dema-2014-0054