Spectral analysis of the matrix Sturm–Liouville operator

The self-adjoint matrix Sturm–Liouville operator on a finite interval with a boundary condition in general form is studied. We obtain asymptotic formulas for the eigenvalues and the weight matrices of the considered operator. These spectral characteristics play an important role in the inverse spect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boundary value problems 2019-11, Vol.2019 (1), p.1-17, Article 178
1. Verfasser: Bondarenko, Natalia P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The self-adjoint matrix Sturm–Liouville operator on a finite interval with a boundary condition in general form is studied. We obtain asymptotic formulas for the eigenvalues and the weight matrices of the considered operator. These spectral characteristics play an important role in the inverse spectral theory. Our technique is based on an analysis of analytic functions and on the contour integration in the complex plane of the spectral parameter. In addition, we adapt the obtained asymptotic formulas to the Sturm–Liouville operators on a star-shaped graph with two different types of matching conditions.
ISSN:1687-2770
1687-2762
1687-2770
DOI:10.1186/s13661-019-1292-z