Hierarchical multi-label classification model for science and technology news based on heterogeneous graph semantic enhancement

In the context of high-quality economic development, technological innovation has emerged as a fundamental driver of socio-economic progress. The consequent proliferation of science and technology news, which acts as a vital medium for disseminating technological advancements and policy changes, has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ. Computer science 2024-11, Vol.10, p.e2469, Article e2469
Hauptverfasser: Cheng, Quan, Cheng, Jingyi, Chen, Jian, Liu, Shaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of high-quality economic development, technological innovation has emerged as a fundamental driver of socio-economic progress. The consequent proliferation of science and technology news, which acts as a vital medium for disseminating technological advancements and policy changes, has attracted considerable attention from technology management agencies and innovation organizations. Nevertheless, online science and technology news has historically exhibited characteristics such as limited scale, disorderliness, and multi-dimensionality, which is extremely inconvenient for users of deep application. While single-label classification techniques can effectively categorize textual information, they face challenges in leading science and technology news classification due to a lack of a hierarchical knowledge framework and insufficient capacity to reveal knowledge integration features. This study proposes a hierarchical multi-label classification model for science and technology news, enhanced by heterogeneous graph semantics. The model captures multi-dimensional themes and hierarchical structural features within science and technology news through a hierarchical transmission module. It integrates graph convolutional networks to extract node information and hierarchical relationships from heterogeneous graphs, while also incorporating prior knowledge from domain knowledge graphs to address data scarcity. This approach enhances the understanding and classification capabilities of the semantics of science and technology news. Experimental results demonstrate that the model achieves precision, recall, and F1 scores of 84.21%, 88.89%, and 86.49%, respectively, significantly surpassing baseline models. This research presents an innovative solution for hierarchical multi-label classification tasks, demonstrating significant application potential in addressing data scarcity and complex thematic classification challenges.
ISSN:2376-5992
2376-5992
DOI:10.7717/peerj-cs.2469