A Remotely Sensed Framework for Spatially-Detailed Dryland Soil Organic Matter Mapping: Coupled Cross-Wavelet Transform with Fractional Vegetation and Soil-Related Endmember Time Series

Soil organic matter (SOM) plays pivotal roles in characterizing dryland structure and function; however, remotely sensed spatially-detailed SOM mapping in these regions remains a challenge. Various digital soil mapping approaches based on either single-period remote sensing or spectral indices in ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2022-04, Vol.14 (7), p.1701
Hauptverfasser: Sun, Qiangqiang, Zhang, Ping, Jiao, Xin, Lun, Fei, Dong, Shiwei, Lin, Xin, Li, Xiangyu, Sun, Danfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil organic matter (SOM) plays pivotal roles in characterizing dryland structure and function; however, remotely sensed spatially-detailed SOM mapping in these regions remains a challenge. Various digital soil mapping approaches based on either single-period remote sensing or spectral indices in other ecosystems usually produce inaccurate, poorly constrained estimates of dryland SOM. Here, a framework for spatially-detailed SOM mapping was proposed based on cross-wavelet transform (XWT) that exploits ecologically meaningful features from intra-annual fractional vegetation and soil-related endmember records. In this framework, paired green vegetation (GV) and soil-related endmembers (i.e., dark surface (DA), saline land (SA), sand land (SL)) sequences were adopted to extract 30 XWT features in temporally and spatially continuous domains of cross-wavelet spectrum. We then selected representative features as exploratory covariates for SOM mapping, integrated with four state-of-the-art machine learning approaches, i.e., ridge regression (RR), least squares-support vector machines (LS-SVM), random forests (RF), and gradient boosted regression trees (GBRT). The results reported that SOM maps from 13 coupled filtered XWT features and four machine learning approaches were consistent with soil-landscape knowledge, as evidenced by a spatially-detailed gradient from oasis to barren. This framework also presented more accurate and reliable results than arithmetically averaged features of intra-annual endmembers and existing datasets. Among the four approaches, both RF and GBRT were more appropriate in the XWT-based framework, showing superior accuracy, robustness, and lower uncertainty. The XWT synthetically characterized soil fertility from the consecutive structure of intra-annual vegetation and soil-related endmember sequences. Therefore, the proposed framework improved the understanding of SOM and land degradation neutrality, potentially leading to more sustainable management of dryland systems.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14071701