United we stand: Accruals in strength-based argumentation

Argumentation has been an important topic in knowledge representation, reasoning and multi-agent systems during the last twenty years. In this paper, we propose a new abstract framework where arguments are associated with a strength, namely a quantitative information which is used to determine wheth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Argument & computation 2021-02, Vol.12 (1), p.87-113
Hauptverfasser: Rossit, Julien, Mailly, Jean-Guy, Dimopoulos, Yannis, Moraitis, Pavlos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Argumentation has been an important topic in knowledge representation, reasoning and multi-agent systems during the last twenty years. In this paper, we propose a new abstract framework where arguments are associated with a strength, namely a quantitative information which is used to determine whether an attack between arguments succeeds or not. Our Strength-based Argumentation Framework (StrAF) combines ideas of Preference-based and Weighted Argumentation Frameworks in an original way, which permits to define acceptability semantics sensitive to the existence of accruals between arguments. The question of accruals arises in situations where several arguments defending the same position (but from different points of view) against another argument are unable to individually defeat this argument, but could do it collectively if they combine their strengths. We investigate some of the theoretical and computational properties of our new framework and semantics, and present a reasoning algorithm that is based on a translation of the problem into pseudo-boolean constraint satisfaction. This paper proposes an intuitive framework which allows strength compensations in an argumentation context where attacks may not succeed, completed by an approach which detects accruals throughout the reasoning process without requiring the elicitation of all compensatory combinations of arguments as an input.
ISSN:1946-2166
1946-2174
DOI:10.3233/AAC-200904