Experimental Research on NO2 Viscosity and Absorption for (1-Ethyl-3-methylimidazolium Trifluoroacetate plus Triethanolamine) Binary Mixtures

The viscosity (9.34-405.92 mPa & BULL;s) and absorption capacity (0.4394-1.0562 g & BULL;g(-1)) of (1-ethyl-3-methylidazolium trifluoroacetate + triethanolamine) binary blends atmospheric pressure in the temperature range of 303.15-343.15 K and at different mole fractions of [EMIM] [TFA] hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2021-11, Vol.26 (22), p.6953, Article 6953
Hauptverfasser: Liu, Baoyou, Wang, Xinyu, Tian, Jie, Zhang, Peiwen, Yang, Huilong, Jin, Nanxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The viscosity (9.34-405.92 mPa & BULL;s) and absorption capacity (0.4394-1.0562 g & BULL;g(-1)) of (1-ethyl-3-methylidazolium trifluoroacetate + triethanolamine) binary blends atmospheric pressure in the temperature range of 303.15-343.15 K and at different mole fractions of [EMIM] [TFA] have been carried out. The molar fraction of [EMIM] [TFA] dependence of the viscosity and absorption capacity was demonstrated. The addition of a small amount of [EMIM] [TFA] into TEA led to rapidly decreased rates of binary blends' viscosity and absorption capacity. However, the viscosity and absorption of binary blends did not decrease significantly when [EMIM] [TFA] was increased to a specific value. Compared with the molar fraction of the solution, the temperature had no obvious effect on viscosity and absorption capacity. By modeling and optimizing the ratio of viscosity and absorption capacity of ([EMIM] [TFA] + TEA), it is proven that when the mole fraction of [EMIM] [TFA] is 0.58, ([EMIM] [TFA] + TEA) has the best viscosity and absorption capacity at the same time. In addition, at 303.15 K, ([EMIM] [TFA] + TEA) was absorbed and desorbed six times, the absorption slightly decreased, and the desorption increased.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26226953