Improved Medium Baseline RTK Positioning Performance Based on BDS/Galileo/GPS Triple-Frequency-Only Observations

With the global service of the BeiDou Navigation Satellite System (BDS), the Galileo Navigation Satellite System (Galileo), and the modernization of the Global Positioning System (GPS), achieving high-precision positioning through triple-frequency-only observations in medium baseline real-time kinem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-11, Vol.15 (21), p.5198
Hauptverfasser: Dang, Xifeng, Yin, Xiao, Zhang, Yize, Gao, Chengfa, Wu, Jincheng, Liu, Yongqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the global service of the BeiDou Navigation Satellite System (BDS), the Galileo Navigation Satellite System (Galileo), and the modernization of the Global Positioning System (GPS), achieving high-precision positioning through triple-frequency-only observations in medium baseline real-time kinematics (RTK) is anticipated. This study investigates the impacts of double-difference (DD) troposphere delay and ionosphere delay on ambiguity resolution (AR) based on six medium baselines at a latitude of 30°. Additionally, it evaluates positioning accuracy, fixing rate, convergence time, and computational time using triple-frequency-only (B1I/B2a/B3I, E1/E5a/E5b, L1/L2/L5) data, comparing these results to those obtained from dual-frequency (B1I/B2a, E1/E5a, L1/L2) and combined dual-frequency and triple-frequency data. The experimental findings suggest that, for geometry-based wide-lane (WL) AR, the DD troposphere delay and ionosphere delay can be disregarded. However, they cannot be overlooked when aiming to resolve the raw ambiguity. Triple-frequency-only RTK exhibits comparable positioning accuracy to dual-frequency RTK, with its primary advantage lying in faster convergence. The probability of achieving convergence within 180 s is approximately 8.0% higher for triple-frequency-only RTK compared to dual-frequency RTK. In terms of computational time, the use of triple-frequency-only data reduces the required time by 8.26 s compared to the approach that simultaneously employs both dual-frequency and triple-frequency data, resulting in a computational time reduction of approximately 20%. Therefore, when conducting medium baseline RTK positioning, it is recommended to adopt the ambiguity resolution method proposed in this paper based on triple-frequency-only observations.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15215198