A statically balanced and bi-stable compliant end effector combined with a laparoscopic 2DoF robotic arm
This article presents the design of a newly developed 2DoF robotic arm with a novel statically balanced and bi-stable compliant grasper as the end effector for laparoscopic surgery application. The arm is based on internal motors actuating 2 rotational DoFs: pitch and roll. The positive stiffness of...
Gespeichert in:
Veröffentlicht in: | Mechanical sciences (Göttingen) 2012-12, Vol.3 (2), p.85-93 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents the design of a newly developed 2DoF robotic arm with a novel statically balanced and bi-stable compliant grasper as the end effector for laparoscopic surgery application. The arm is based on internal motors actuating 2 rotational DoFs: pitch and roll. The positive stiffness of the monolithic grasper has been compensated using pre-curved straight guided beams that are preloaded collinear with the direction of actuation of the grasper. The result is a fully compliant statically balanced laparoscopic grasper. The grasper has been successfully adapted to a robotic arm. The maximum force and stiffness compensations were measured to be 94% and 97% (i.e. near zero stiffness) respectively. Furthermore, the feasibility of adjusting for bi-stable behavior has been shown. This research can be a preliminary step towards the design of a statically balanced fully compliant robotic arm for laparoscopic surgery and similar areas. |
---|---|
ISSN: | 2191-916X 2191-9151 2191-916X |
DOI: | 10.5194/ms-3-85-2012 |