A Seismic Data Acquisition System Based on Wireless Network Transmission

A seismic data acquisition system based on wireless network transmission is designed to improve the low-frequency response and low sensitivity of the existing acquisition system. The system comprises of a piezoelectric transducer, a high-resolution data acquisition system, and a wireless communicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (13), p.4308
Hauptverfasser: Huang, Yanxia, Song, Junlei, Mo, Wenqin, Dong, Kaifeng, Wu, Xiangning, Peng, Jianyi, Jin, Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A seismic data acquisition system based on wireless network transmission is designed to improve the low-frequency response and low sensitivity of the existing acquisition system. The system comprises of a piezoelectric transducer, a high-resolution data acquisition system, and a wireless communication module. A seismic piezoelectric transducer based on a piezoelectric simply supported beam using PMN-PT is proposed. High sensitivity is obtained by using a new piezoelectric material PMN-PT, and a simply supported beam matching with the PMN-PT wafer is designed, which can provide a good low-frequency response. The data acquisition system includes an electronic circuit for charge conversion, filtering, and amplification, an FPGA, and a 24-bit analog-to-digital converter (ADC). The wireless communication was based on the ZigBee modules and the WiFi modules. The experimental results show that the application of the piezoelectric simply supported beam based on PMN-PT can effectively improve the sensitivity of the piezoelectric accelerometer by more than 190%, compared with the traditional PZT material. At low frequencies, the fidelity of the PMN-PT piezoelectric simply supported beam is better than that of a traditional central compressed model, which is an effective expansion of the bandwidth to the low-frequency region. The charge conversion, filtering, amplification, and digitization of the output signal of the piezoelectric transducer are processed and, finally, are wirelessly transmitted to the monitoring centre, achieving the design of a seismic data acquisition system based on wireless transmission.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21134308