BILP-19-An Ultramicroporous Organic Network with Exceptional Carbon Dioxide Uptake
Porous benzimidazole-based polymers (BILPs) have proven to be promising for carbon dioxide capture and storage. The polarity of their chemical structure in combination with an inherent porosity allows for adsorbing large amounts of carbon dioxide in combination with high selectivities over unpolar g...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2017-08, Vol.22 (8), p.1343 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porous benzimidazole-based polymers (BILPs) have proven to be promising for carbon dioxide capture and storage. The polarity of their chemical structure in combination with an inherent porosity allows for adsorbing large amounts of carbon dioxide in combination with high selectivities over unpolar guest molecules such as methane and nitrogen. For this reason, among purely organic polymers, BILPs contain some of the most effective networks to date. Nevertheless, they are still outperformed by competitive materials such as metal-organic frameworks (MOFs) or metal doped porous polymers. Here, we report the synthesis of BILP-19 and its exceptional carbon dioxide uptake of up to 6 mmol•g-1 at 273 K, making the network comparable to state-of-the-art materials. BILP-19 precipitates in a particulate structure with a strongly anisotropic growth into platelets, indicating a sheet-like structure for the network. It exhibits only a small microporous but a remarkable ultra-microporous surface area of 144 m2•g-1 and 1325 m2•g-1, respectively. We attribute the exceptional uptake of small guest molecules such as carbon dioxide and water to the distinct ultra-microporosity. Additionally, a pronounced hysteresis for both guests is observed, which in combination with the platelet character is probably caused by an expansion of the interparticle space, creating additional accessible ultra-microporous pore volume. For nitrogen and methane, this effect does not occur which explains their low affinity. In consequence, Henry selectivities of 123 for CO2/N2 at 298 K and 12 for CO2/CH4 at 273 K were determined. The network was carefully characterized with solid-state nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, thermal gravimetry (TG) and elemental analyses as well as physisorption experiments with Ar, N2, CO2, CH4 and water. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules22081343 |