Combining Radon Deficit, NAPL Concentration, and Groundwater Table Dynamics to Assess Soil and Groundwater Contamination by NAPLs and Related Attenuation Processes

Soil and groundwater contamination by NAPLs (Non-Aqueous Phase Liquids) is certainly a big issue for protecting the environment. In situ clean-up actions are routinely applied to mitigate the risk and are supplemented by monitoring surveys to assess the degree, extension, and evolution of the contam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-12, Vol.13 (23), p.12813
Hauptverfasser: Mattia, Martina, Tuccimei, Paola, Ciotoli, Giancarlo, Soligo, Michele, Carusi, Claudio, Rainaldi, Elisa, Voltaggio, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil and groundwater contamination by NAPLs (Non-Aqueous Phase Liquids) is certainly a big issue for protecting the environment. In situ clean-up actions are routinely applied to mitigate the risk and are supplemented by monitoring surveys to assess the degree, extension, and evolution of the contamination. Radon gas is here used as a tracer of contamination because of its high solubility in non-polar solvents that produce a reduced concentration of the gas in polluted soil and groundwater with reference to radon levels in adjacent “clean” areas. This approach was employed in two sites where gasoline and diesel spillage occurred, causing soil and groundwater contamination. The two case studies were chosen because of their difference in terms of the hydrogeological features, age of the spillage, composition of residual NAPLs, and clean-up measures to test the advantages and limits of this approach in a variety of settings. Radon data, NAPL concentration in the groundwater (mainly total hydrocarbons, Methyl Tertiary-Butyl Ether and Ethyl Tertiary-Butyl Ether) and the depth of the groundwater table were periodically collected in surveys that spanned a period of two years. This dataset was statistically processed using principal component analysis to unravel which factors and attenuation processes are working in the sites and the response of the radon deficit approach to this complex series of phenomena concurrently occurring there.
ISSN:2076-3417
2076-3417
DOI:10.3390/app132312813