A New Trajectory Tracking Control Method for Fully Electrically Driven Quadruped Robot

To improve the accuracy of tracking the trunk center-of-mass (CoM) trajectory and foot-end trajectory in a fully electrically driven quadruped robot, an efficient and practical new trajectory tracking control method is designed. The proposed trajectory tracking method is mainly divided into trunk ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machines (Basel) 2022-05, Vol.10 (5), p.292
Hauptverfasser: You, Yulong, Yang, Zhong, Zou, Teng’an, Sui, Yaoyu, Xu, Changliang, Zhang, Chi, Xu, Hao, Zhang, Zhao, Han, Jiaming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the accuracy of tracking the trunk center-of-mass (CoM) trajectory and foot-end trajectory in a fully electrically driven quadruped robot, an efficient and practical new trajectory tracking control method is designed. The proposed trajectory tracking method is mainly divided into trunk balance controller (TBC) and swing leg controller (SLC). In TBC, a quadruped robot dynamics model is developed to find the optimal foot-end force that follows the trunk CoM trajectory based on the model predictive control (MPC) principle. In SLC, the Bessel curve is planned as the desired trajectory at the foot-end, while the desired trajectory is tracked by a virtual spring-damping element driving the foot-end, meanwhile, the radial basis function neural network (RBFNN) is applied for supervisory control to improve the control performance for the system. The experimental results show that the control method can modify the robot’s foot-end trajectory tracking effect, so that the stability error can be eliminated and the robustness of the controller can be improved, meanwhile, the linear and circular trajectory for CoM can be tracked accurately and quickly.
ISSN:2075-1702
2075-1702
DOI:10.3390/machines10050292