High protection and transmission-blocking immunity elicited by single-cycle SARS-CoV-2 vaccine in hamsters

Vaccines have played a central role in combating the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants are increasingly evading first-generation vaccine protection. To address this challenge, we designed “single-cycle infection SARS-CoV-2 viruses” (SCVs) that lack essential viral genes, poss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj vaccines 2024-10, Vol.9 (1), p.206-16, Article 206
Hauptverfasser: Lett, Martin Joseph, Otte, Fabian, Hauser, David, Schön, Jacob, Kipfer, Enja Tatjana, Hoffmann, Donata, Halwe, Nico J., Breithaupt, Angele, Ulrich, Lorenz, Britzke, Tobias, Kochmann, Jana, Corleis, Björn, Zhang, Yuepeng, Urda, Lorena, Cmiljanovic, Vladimir, Lang, Christopher, Beer, Martin, Mittelholzer, Christian, Klimkait, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vaccines have played a central role in combating the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants are increasingly evading first-generation vaccine protection. To address this challenge, we designed “single-cycle infection SARS-CoV-2 viruses” (SCVs) that lack essential viral genes, possess distinctive immune-modulatory features, and exhibit an excellent safety profile in the Syrian hamster model. Animals intranasally vaccinated with an Envelope-gene-deleted vaccine candidate were fully protected against an autologous challenge with the SARS-CoV-2 virus through systemic and mucosal humoral immune responses. Additionally, the deletion of immune-downregulating viral genes in the vaccine construct prevented challenge virus transmission to contact animals. Moreover, vaccinated animals displayed neither tissue inflammation nor lung damage. Consequently, SCVs hold promising potential to induce potent protection against COVID-19, surpassing the immunity conferred by natural infection, as demonstrated in human immune cells.
ISSN:2059-0105
2059-0105
DOI:10.1038/s41541-024-00992-z