Testing universality of Feynman-Tan relation in interacting Bose gases using high-order Bragg spectra
The Feynman-Tan relation, obtained by combining the Feynman energy relation with the Tan’s two-body contact, can explain the excitation spectra of strongly interacting 39 K Bose-Einstein condensate (BEC). Since the shift of excitation resonance in the Feynman-Tan relation is inversely proportional t...
Gespeichert in:
Veröffentlicht in: | Light, science & applications science & applications, 2023-02, Vol.12 (1), p.50-50, Article 50 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Feynman-Tan relation, obtained by combining the Feynman energy relation with the Tan’s two-body contact, can explain the excitation spectra of strongly interacting
39
K Bose-Einstein condensate (BEC). Since the shift of excitation resonance in the Feynman-Tan relation is inversely proportional to atomic mass, the test of whether this relation is universal for other atomic systems is significant for describing the effect of interaction in strongly correlated Bose gases. Here we measure the high-momentum excitation spectra of
133
Cs BEC with widely tunable interactions by using the second- and third-order Bragg spectra. We observe the backbending of frequency shift of excitation resonance with increasing interaction, and even the shift changes its sign under the strong interactions in the high-order Bragg spectra. Our finding shows good agreement with the prediction based on the Feynman-Tan relation. Our results provide significant insights for understanding the profound properties of strongly interacting Bose gases. |
---|---|
ISSN: | 2047-7538 2095-5545 2047-7538 |
DOI: | 10.1038/s41377-023-01103-8 |