Pergularia tomentosa coupled with selenium nanoparticles salvaged lead acetate-induced redox imbalance, inflammation, apoptosis, and disruption of neurotransmission in rats’ brain
In this study, the neuroprotective potential of either leaf methanolic extract (PtE) alone or in combination with selenium nanoparticles (SeNPs-PtE) was investigated against lead acetate (PbAc)-induced neurotoxicity. Experimental rats were pretreated with PtE (100 mg/kg) or SeNPs-PtE (0.5 mg/kg) and...
Gespeichert in:
Veröffentlicht in: | Open Chemistry 2022-11, Vol.20 (1), p.1313-1326 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the neuroprotective potential of either
leaf methanolic extract (PtE) alone or in combination with selenium nanoparticles (SeNPs-PtE) was investigated against lead acetate (PbAc)-induced neurotoxicity. Experimental rats were pretreated with PtE (100 mg/kg) or SeNPs-PtE (0.5 mg/kg) and injected intraperitoneally with PbAc (20 mg/kg) for 2 weeks. Notably, SeNPs-PtE decreased brain Pb accumulation and enhanced the level of dopamine and the activity of AChE compared to the control rats. In addition, elevated neural levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione along with decreased lipid peroxidation levels were noticed in pretreated groups with SeNPs-PtE. Moreover, SeNPs-PtE significantly suppressed neural inflammation, as indicated by lower levels of interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, nuclear factor-kappa B p65, and nitric oxide in the examined brain tissue. The molecular results also unveiled significant down-regulation in iNOS gene expression in the brains of SeNPs-PtE-treated rats. In addition, SeNPs-PtE administration counteracted the neural loss by increasing B-cell lymphoma 2 (Bcl-2) and brain-derived neurotrophic factor levels as well as decreasing BCL2-associated X protein and caspase-3 levels. To sum up, our data suggest that
extract alone or in combination with SeNPs has great potential in reversing the neural tissue impairment induced by PbAc via its antioxidant, anti-inflammatory, and anti-apoptotic activities. This study might have therapeutic implications in preventing and treating several lead-induced neurological disorders. |
---|---|
ISSN: | 2391-5420 2391-5420 |
DOI: | 10.1515/chem-2022-0246 |