Reducing Computational Overhead by Improving the CRI and IRI Implication Step

In conventional SISO fuzzy expert systems (n-element input, m-element output), the implication step requires the O(n×m) operations using compositional rule-based inference (CRI) and individual rule-based inference (IRI). However, this introduces excessive complexity. This paper proposes two methods,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Control Science and Engineering 2015-01, Vol.2015 (2015), p.477-486
Hauptverfasser: Vo, Thoai Phu, Chen, Joy Iong-Zong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In conventional SISO fuzzy expert systems (n-element input, m-element output), the implication step requires the O(n×m) operations using compositional rule-based inference (CRI) and individual rule-based inference (IRI). However, this introduces excessive complexity. This paper proposes two methods, sort compositional rule-based inference (SCRI) and sort individual rule-based inference (SIRI) aiming at reducing both temporal and spatial complexity by changing the operation of the implication step to O((n+m)log2(n+m)). We also propose a divide-and-conquer technique, called Quicksort, to verify the accuracy of SCRI and SIRI algorithms deployment to easily outperform the CRI and IRI methods.
ISSN:1687-5249
1687-5257
DOI:10.1155/2015/725258