Reducing Computational Overhead by Improving the CRI and IRI Implication Step
In conventional SISO fuzzy expert systems (n-element input, m-element output), the implication step requires the O(n×m) operations using compositional rule-based inference (CRI) and individual rule-based inference (IRI). However, this introduces excessive complexity. This paper proposes two methods,...
Gespeichert in:
Veröffentlicht in: | Journal of Control Science and Engineering 2015-01, Vol.2015 (2015), p.477-486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In conventional SISO fuzzy expert systems (n-element input, m-element output), the implication step requires the O(n×m) operations using compositional rule-based inference (CRI) and individual rule-based inference (IRI). However, this introduces excessive complexity. This paper proposes two methods, sort compositional rule-based inference (SCRI) and sort individual rule-based inference (SIRI) aiming at reducing both temporal and spatial complexity by changing the operation of the implication step to O((n+m)log2(n+m)). We also propose a divide-and-conquer technique, called Quicksort, to verify the accuracy of SCRI and SIRI algorithms deployment to easily outperform the CRI and IRI methods. |
---|---|
ISSN: | 1687-5249 1687-5257 |
DOI: | 10.1155/2015/725258 |