Topological aspects of brane fields: Solitons and higher-form symmetries
In this note, we classify topological solitons of n n -brane fields, which are nonlocal fields that describe n n -dimensional extended objects. We consider a class of n n -brane fields that formally define a homomorphism from the n n -fold loop space \Omega^n X_D Ω n X D of spacetime X_D X D to a sp...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2024-05, Vol.16 (5), p.128, Article 128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we classify topological solitons of
n
n
-brane fields, which are nonlocal fields that describe
n
n
-dimensional extended objects. We consider a class of
n
n
-brane fields that formally define a homomorphism from the
n
n
-fold loop space
\Omega^n X_D
Ω
n
X
D
of spacetime
X_D
X
D
to a space
\mathcal{E}_n
ℰ
n
. Examples of such
n
n
-brane fields are Wilson operators in
n
n
-form gauge theories. The solitons are singularities of the
n
n
-brane field, and we classify them using the homotopy theory of
{\mathbb{E}_n}
n
-algebras. We find that the classification of codimension
{k+1}
k
+
1
topological solitons with
{k≥ n}
k
≥
n
can be understood using homotopy groups of
\mathcal{E}_n
ℰ
n
. In particular, they are classified by
{\pi_{k-n}(\mathcal{E}_n)}
π
k
−
n
(
ℰ
n
)
when
{n>1}
n
>
1
and by
{\pi_{k-n}(\mathcal{E}_n)}
π
k
−
n
(
ℰ
n
)
modulo a
{\pi_{1-n}(\mathcal{E}_n)}
π
1
−
n
(
ℰ
n
)
action when
{n=0}
n
=
0
or
{1}
1
. However, for
{n>2}
n
>
2
, their classification goes beyond the homotopy groups of
\mathcal{E}_n
ℰ
n
when
{k< n}
k
<
n
, which we explore through examples. We compare this classification to
n
n
-form
\mathcal{E}_n
ℰ
n
gauge theory. We then apply this classification and consider an
{n}
n
-form symmetry described by the abelian group
{G^{(n)}}
G
(
n
)
that is spontaneously broken to
{H^{(n)}\subset G^{(n)}}
H
(
n
)
⊂
G
(
n
)
, for which the order parameter characterizing this symmetry breaking pattern is an
{n}
n
-brane field with target space
{\mathcal{E}_n = G^{(n)}/H^{(n)}}
ℰ
n
=
G
(
n
)
/
H
(
n
)
. We discuss this classification in the context of many examples, both with and without ’t Hooft anomalies. |
---|---|
ISSN: | 2542-4653 2542-4653 |
DOI: | 10.21468/SciPostPhys.16.5.128 |