Effects of Stress on Transport Properties in Fractured Porous Rocks

The nonlinear characteristics of the rock transport properties (permeability and electrical conductivity in this study) as a function of stress are closely related to the geometry of the pore space, which consists of stiff pores, microcracks, or microfractures. We consider two behaviors of the pore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lithosphere 2024-01, Vol.2024 (1)
Hauptverfasser: Ba, Jing, Min, Jinyi, Zhang, Lin, Carcione, José M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nonlinear characteristics of the rock transport properties (permeability and electrical conductivity in this study) as a function of stress are closely related to the geometry of the pore space, which consists of stiff pores, microcracks, or microfractures. We consider two behaviors of the pore space, one linear and the other exponential, related to the stiff pores and microfractures, respectively, where the relation between stress and strain can be described by the Two-Part Hooke’s Model. With this model, the relations between porosity, transport properties, and effective stress (confining minus pore pressure) can be obtained and validated with the experimental data of four tight sandstones collected from the Shaximiao Formation of Sichuan Basin, southwest China. The agreement is good. At low effective stresses, the closure of cracks is the main mechanism affecting the transport properties, whose behavior is similar in terms of their parameters. Subsequently, experimental data of nine tight sandstones from the Yanchang Formation, collected from the Ordos Basin, west China, are employed to confirm the previous results, indicating that the fluid and electrical current follow the same path in the pore space.
ISSN:1941-8264
1947-4253
DOI:10.2113/2024/lithosphere_2023_103