Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals

Hydroxy-alkenals, such as 4-hydroxy-2(E)-nonenal (4-HNE; from n-6 fatty acids), are degradation products of fatty acid hydroperoxides, including those generated by free radical attack of membrane polyunsaturated fatty acyl moieties. The cytotoxic effects of hydroxy-alkenals are well known and are ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lipid research 2007-04, Vol.48 (4), p.816-825
Hauptverfasser: Bacot, Sandrine, Bernoud-Hubac, Nathalie, Chantegrel, Bernard, Deshayes, Christian, Doutheau, Alain, Ponsin, Gabriel, Lagarde, Michel, Guichardant, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydroxy-alkenals, such as 4-hydroxy-2(E)-nonenal (4-HNE; from n-6 fatty acids), are degradation products of fatty acid hydroperoxides, including those generated by free radical attack of membrane polyunsaturated fatty acyl moieties. The cytotoxic effects of hydroxy-alkenals are well known and are mainly attributable to their interaction with different molecules to form covalent adducts. Indeed, ethanolamine phospholipids (PEs) can be covalently modified in a cellular system by hydroxy-alkenals, such as 4-HNE, 4-hydroxy-2(E)-hexenal (4-HHE; from n-3 fatty acids), and 4-hydroxy-dodecadienal (4-HDDE; from the 12-lipoxygenase product of arachidonic acid), to form mainly Michael adducts. In this study, we describe the formation of PE Michael adducts in human blood platelets in response to oxidative stress and in retinas of streptozotocin-induced diabetic rats. We have successfully characterized and evaluated, for the first time, PEs coupled with 4-HHE, 4-HNE, and 4-HDDE by gas chromatography-mass spectrometry measurement of their ethanolamine moieties. We also report that aggregation of isolated human blood platelets enriched with PE-4-hydroxy-alkenal Michael adducts was altered. These data suggest that these adducts could be used as specific markers of membrane disorders occurring in pathophysiological states with associated oxidative stress and might affect cell function.
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.M600340-JLR200