Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses

Climate change is a global problem facing all aspects of the agricultural sector. Heat stress due to increasing atmospheric temperature is one of the most common climate change impacts on agriculture. Heat stress has direct effects on crop production, along with indirect effects through associated p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2024-07, Vol.14 (15), p.1253
Hauptverfasser: Prokisch, József, Ferroudj, Aya, Labidi, Safa, El-Ramady, Hassan, Brevik, Eric C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change is a global problem facing all aspects of the agricultural sector. Heat stress due to increasing atmospheric temperature is one of the most common climate change impacts on agriculture. Heat stress has direct effects on crop production, along with indirect effects through associated problems such as drought, salinity, and pathogenic stresses. Approaches reported to be effective to mitigate heat stress include nano-management. Nano-agrochemicals such as nanofertilizers and nanopesticides are emerging approaches that have shown promise against heat stress, particularly biogenic nano-sources. Nanomaterials are favorable for crop production due to their low toxicity and eco-friendly action. This review focuses on the different stresses associated with heat stress and their impacts on crop production. Nano-management of crops under heat stress, including the application of biogenic nanofertilizers and nanopesticides, are discussed. The potential and limitations of these biogenic nano-agrochemicals are reviewed. Potential nanotoxicity problems need more investigation at the local, national, and global levels, as well as additional studies into biogenic nano-agrochemicals and their effects on soil, plant, and microbial properties and processes.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano14151253