Mechanism of Nardostachyos Radix et Rhizoma–Salidroside in the treatment of premature ventricular beats based on network pharmacology and molecular docking

To analyse the mechanism of Nardostachyos Radix et Rhizoma–Salidroside in the treatment of Premature Ventricular Brats by using network pharmacology and molecular docking and to provide the basis for developing the use of experimental and clinical traditional Chinese medicine. The chemical compositi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2023-11, Vol.13 (1), p.20741-20741, Article 20741
Hauptverfasser: Shuyuan, Liu, Haoyu, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To analyse the mechanism of Nardostachyos Radix et Rhizoma–Salidroside in the treatment of Premature Ventricular Brats by using network pharmacology and molecular docking and to provide the basis for developing the use of experimental and clinical traditional Chinese medicine. The chemical compositions of Nardostachyos Radix et Rhizoma and Salidroside were determined, and their related targets were predicted. The disease-related targets were obtained by searching the common disease databases Genecards, OMIM, Drugbank and DisGeNET, and the intersection between the predicted targets and the disease targets was determined. Then using the STRING database to set up the protein‒protein interactions (PPIs) network between Nardostachyos Radix et Rhizoma–Salidroside and the common targets of PVB. An “herb-ingredient-target” network was constructed and analyzed by Cytoscape3.7.2 software. Using the metascape database to analysis the predicted therapeutic targets based on the GO and KEGG. Finally, molecular docking technology was used toconfirm the capacity of the primary active ingredients of the 2 herbs to bind to central targets using the online CB-Dock2 database. 41 active components of Nardostachyos Radix et Rhizoma–Salidroside were detected, with 420 potential targets of action, with a total of 1688 PVB targets, and the top 10 core targets of herb-disease degree values were AKT1, TNF, GAPDH, SRC, PPARG, EGFR, PTGS2, ESR1, MMP9, and STAT3. KEGG analysis indicated that its mechanism may be related to the calcium signalling pathway, cancer signalling pathway, AGE-RAGE signalling pathway and other pathways. Molecular docking suggested that main of the active ingredients of the Nardostachyos Radix et Rhizoma–Salidroside pairs were well bound to the core targets. Based on novel network pharmacology and molecular docking validation research methods, we revealed for the first time the potential mechanism of Nardostachyos Radix et Rhizoma–Salidroside in PVB therapy.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-48277-0