Anomalous dimensions of monopole operators in scalar QED3 with Chern-Simons term
A bstract We study monopole operators with the lowest possible topological charge q = 1/2 at the infrared fixed point of scalar electrodynamics in 2 + 1 dimension (scalar QED 3 ) with N complex scalars and Chern-Simons coupling |k| = N . In the large N expansion, monopole operators in this theory wi...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2021-07, Vol.2021 (7), p.1-24, Article 34 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A
bstract
We study monopole operators with the lowest possible topological charge
q
= 1/2 at the infrared fixed point of scalar electrodynamics in 2 + 1 dimension (scalar QED
3
) with
N
complex scalars and Chern-Simons coupling
|k|
=
N
. In the large
N
expansion, monopole operators in this theory with spins
ℓ
<
O
N
and associated flavor representations are expected to have the same scaling dimension to sub-leading order in 1/
N
. We use the state-operator correspondence to calculate the scaling dimension to sub-leading order with the result
N −
0
.
2743 +
O
(1/
N
), which improves on existing leading order results. We also compute the
ℓ
2
/
N
term that breaks the degeneracy to sub-leading order for monopoles with spins
ℓ
=
O
N
. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP07(2021)034 |