Measuring the dynamic balance of integration and segregation underlying consciousness, anesthesia, and sleep in humans

Consciousness requires a dynamic balance of integration and segregation in brain networks. We report an fMRI-based metric, the integration-segregation difference (ISD), which captures two key network properties: network efficiency (integration) and clustering (segregation). With this metric, we quan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-10, Vol.15 (1), p.9164-18, Article 9164
Hauptverfasser: Jang, Hyunwoo, Mashour, George A., Hudetz, Anthony G., Huang, Zirui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consciousness requires a dynamic balance of integration and segregation in brain networks. We report an fMRI-based metric, the integration-segregation difference (ISD), which captures two key network properties: network efficiency (integration) and clustering (segregation). With this metric, we quantify brain state transitions from conscious wakefulness to unresponsiveness induced by the anesthetic propofol. The observed changes in ISD suggest a profound shift towards the segregation of brain networks during anesthesia. A common unimodal-transmodal sequence of disintegration and reintegration occurs in brain networks during, respectively, loss and return of responsiveness. Machine learning models using integration and segregation data accurately identify awake vs. unresponsive states and their transitions. Metastability (dynamic recurrence of non-equilibrium transient states) is more effectively explained by integration, while complexity (diversity of neural activity) is more closely linked with segregation. A parallel analysis of sleep states produces similar findings. Our results demonstrate that the ISD reliably indexes states of consciousness. Consciousness depends on a balance of information that is both integrated and segregated in brain networks. Here, the authors show a novel brain metric for this balance that detects changes in consciousness during anesthesia and sleep in humans.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-53299-x