Engineered Miscanthus Biochar Performance as a Broiler Litter Amendment
This study investigates Miscanthus biochar’s potential to reduce ammonia (NH3) emissions in poultry production. Biochar from lignocellulosic biomass has proven a versatile tool in environmental remediation for water, soil, and air quality applications with ample opportunity for inclusion in agricult...
Gespeichert in:
Veröffentlicht in: | AgriEngineering 2024-12, Vol.6 (4), p.4911-4924 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigates Miscanthus biochar’s potential to reduce ammonia (NH3) emissions in poultry production. Biochar from lignocellulosic biomass has proven a versatile tool in environmental remediation for water, soil, and air quality applications with ample opportunity for inclusion in agricultural systems. Ammonia emissions present a concern for animal/human health and the environment. The impacts of biochar production temperature (400 and 700 °C), organic acid activation (acetic acid, citric acid), and application rate (0.24 and 0.49 kg m−2) on broiler litter NH3 emissions were evaluated. Biochar production parameters, i.e., temperature, and acid type were found to significantly impact its performance as an NH3 control measure. The following factors, ranked by magnitude of impact, were found to statistically impact the NH3 emission rate: biochar application rate (p < 0.001), biochar production temperature (p = 0.003), and lastly acid type (p = 0.007). The best performing biochar was produced at 400 °C, activated with acetic acid, and applied at a high addition rate (0.49 kg m−2). This treatment reduced cumulative NH3 volatilization after 2 weeks by 19.7%. |
---|---|
ISSN: | 2624-7402 2624-7402 |
DOI: | 10.3390/agriengineering6040280 |