Upconversion time-stretch infrared spectroscopy

High-speed measurement confronts the extreme speed limit when the signal becomes comparable to the noise level. In the context of broadband mid-infrared spectroscopy, state-of-the-art ultrafast Fourier-transform infrared spectrometers, in particular dual-comb spectrometers, have improved the measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2023-03, Vol.12 (1), p.48-10, Article 48
Hauptverfasser: Hashimoto, Kazuki, Nakamura, Takuma, Kageyama, Takahiro, Badarla, Venkata Ramaiah, Shimada, Hiroyuki, Horisaki, Ryoich, Ideguchi, Takuro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-speed measurement confronts the extreme speed limit when the signal becomes comparable to the noise level. In the context of broadband mid-infrared spectroscopy, state-of-the-art ultrafast Fourier-transform infrared spectrometers, in particular dual-comb spectrometers, have improved the measurement rate up to a few MSpectra s −1 , which is limited by the signal-to-noise ratio. Time-stretch infrared spectroscopy, an emerging ultrafast frequency-swept mid-infrared spectroscopy technique, has shown a record-high rate of 80 MSpectra s −1 with an intrinsically higher signal-to-noise ratio than Fourier-transform spectroscopy by more than the square-root of the number of spectral elements. However, it can measure no more than ~30 spectral elements with a low resolution of several cm −1 . Here, we significantly increase the measurable number of spectral elements to more than 1000 by incorporating a nonlinear upconversion process. The one-to-one mapping of a broadband spectrum from the mid-infrared to the near-infrared telecommunication region enables low-loss time-stretching with a single-mode optical fiber and low-noise signal detection with a high-bandwidth photoreceiver. We demonstrate high-resolution mid-infrared spectroscopy of gas-phase methane molecules with a high resolution of 0.017 cm −1 . This unprecedentedly high-speed vibrational spectroscopy technique would satisfy various unmet needs in experimental molecular science, e.g., measuring ultrafast dynamics of irreversible phenomena, statistically analyzing a large amount of heterogeneous spectral data, or taking broadband hyperspectral images at a high frame rate. We develop upconversion time-stretch infrared spectroscopy, which enables high-speed and high-resolution broadband mid-infrared spectroscopy with over 1000 spectral elements at a rate of more than 10 MSpectra s −1 .
ISSN:2047-7538
2095-5545
2047-7538
DOI:10.1038/s41377-023-01096-4