Twin Minus Total Domination Numbers In Directed Graphs
Let D = (V,A) be a finite simple directed graph (shortly, digraph). A function f : V → {−1, 0, 1} is called a twin minus total dominating function (TMTDF) if f(N−(v)) ≥ 1 and f(N+(v)) ≥ 1 for each vertex v ∈ V. The twin minus total domination number of D is y*mt(D) = min{w(f) | f is a TMTDF of D}. I...
Gespeichert in:
Veröffentlicht in: | Discussiones Mathematicae. Graph Theory 2017-01, Vol.37 (4), p.989-1004 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let D = (V,A) be a finite simple directed graph (shortly, digraph). A function f : V → {−1, 0, 1} is called a twin minus total dominating function (TMTDF) if f(N−(v)) ≥ 1 and f(N+(v)) ≥ 1 for each vertex v ∈ V. The twin minus total domination number of D is y*mt(D) = min{w(f) | f is a TMTDF of D}. In this paper, we initiate the study of twin minus total domination numbers in digraphs and we present some lower bounds for y*mt(D) in terms of the order, size and maximum and minimum in-degrees and out-degrees. In addition, we determine the twin minus total domination numbers of some classes of digraphs. |
---|---|
ISSN: | 1234-3099 2083-5892 |
DOI: | 10.7151/dmgt.1983 |