Mechanical and Physical Characterization of Papercrete as New Eco-Friendly Construction Material

The manufacturing of Portland cement is responsible for a big amount of energy and greenhouse gas (GHG) emission. Therefore, to date, it is imperative to find alternative materials to replace a major part of cement for sustainable concrete constructions. The present study forms a part of an on-going...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-01, Vol.11 (3), p.1011
Hauptverfasser: Cardinale, Tiziana, D’Amato, Michele, Sulla, Roselena, Cardinale, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The manufacturing of Portland cement is responsible for a big amount of energy and greenhouse gas (GHG) emission. Therefore, to date, it is imperative to find alternative materials to replace a major part of cement for sustainable concrete constructions. The present study forms a part of an on-going research project on the application of new cementitious matrices produced using different types of recycled materials. In particular, it focuses on the use of pulp and waste paper to partially replace Portland cement at varying percentages for producing a new lightweight mortar, frequently named papercrete. The development of this economical and eco-friendly material may permit of recycling a big amount of waste paper leading to lower housing costs with also ecological benefits. To this scope, an experimental campaign in the laboratory is carried out to characterize this new innovative material from a physical and mechanical point of view. The preliminary results of this on-going experimental campaign are illustrated and commented on in this paper. The obtained results confirm the possibility of applying this partially-recycled material as a possible alternative for strengthening existing panels of masonry.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11031011