Heisenberg symmetry and hypermultiplet manifolds

We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N=2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear physics. B 2016-04, Vol.905 (C), p.293-312
Hauptverfasser: Antoniadis, Ignatios, Derendinger, Jean-Pierre, Marios Petropoulos, P., Siampos, Konstantinos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N=2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U(1)×U(1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry – as opposed to Heisenberg⋉U(1). We finally discuss the realization of the latter by gauging appropriate Sp(2,4) generators in N=2 conformal supergravity.
ISSN:0550-3213
1873-1562
DOI:10.1016/j.nuclphysb.2016.02.021