Field-controlled multicritical behavior and emergent universality in fully frustrated quantum magnets
Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum phase diagram contains four states with dist...
Gespeichert in:
Veröffentlicht in: | npj quantum materials 2024-03, Vol.9 (1), p.25-9, Article 25 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phase transitions in condensed matter are a source of exotic emergent properties. We study the fully frustrated bilayer Heisenberg antiferromagnet to demonstrate that an applied magnetic field creates a previously unknown emergent criticality. The quantum phase diagram contains four states with distinctly different symmetries, all but one pair separated by first-order transitions. We show by quantum Monte Carlo simulations that the thermal phase diagram is dominated by a wall of discontinuities extending between the dimer-triplet phases and the singlet-containing phases. This wall is terminated at finite temperatures by a critical line, which becomes multicritical where the Berezinskii-Kosterlitz-Thouless (BKT) transition of the dimer-triplet antiferromagnet and the thermal Ising transition of the singlet-triplet crystal phase also terminate. The combination of merging symmetries leads to a 4-state Potts universality not contained in the microscopic Hamiltonian, which we interpret within the Ashkin-Teller model. Our results represent a systematic step in understanding emergent phenomena in quantum magnetic materials, including the “Shastry-Sutherland compound” SrCu
2
(BO
3
)
2
. |
---|---|
ISSN: | 2397-4648 2397-4648 |
DOI: | 10.1038/s41535-024-00636-4 |