The Water-Enhanced Turbofan as Enabler for Climate-Neutral Aviation
A significant part of the current aviation climate impact is caused by non-carbon-dioxide emissions, mainly nitrogen oxides (NOx) and contrails. It is, therefore, important to have a holistic view on climate metrics. Today’s conventional, but already well-developed, aero-engines are based on the Jou...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-12, Vol.12 (23), p.12431 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A significant part of the current aviation climate impact is caused by non-carbon-dioxide emissions, mainly nitrogen oxides (NOx) and contrails. It is, therefore, important to have a holistic view on climate metrics. Today’s conventional, but already well-developed, aero-engines are based on the Joule–Brayton cycle, and leave only limited room for improvement in climate impact. The revolutionary Water-Enhanced Turbofan (WET) concept represents a technical step change addressing all relevant emissions by implementing the Cheng cycle, which combines the gas turbine cycle with a Clausius–Rankine steam cycle. This paper builds upon previous publications regarding the WET concept, and outlines the evolution since then. Promising WET configurations are evaluated according to their ability to reduce global warming potential compared to an evolutionarily advanced turbofan engine. A quantitative approach to estimate reduction of NOx emissions through steam injection is presented. The impact on the creation of contrails is considered using the Schmidt-Appleman criterion. In conclusion, all three climate-relevant emissions can be reduced with the WET concept compared to a technologically similar turbofan in terms of CO2 (up to 10%), NOx (more than 90%), and contrails (more than 50%). The resulting in-flight climate impact can be reduced by more than 40% when using fossil kerosene, paving the way to climate-neutral aviation. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app122312431 |