A multiscale feature fusion enhanced CNN with the multiscale channel attention mechanism for efficient landslide detection (MS2LandsNet) using medium-resolution remote sensing data

ABSTRACTDeep learning (DL) models have been widely used for remote sensing-based landslide mapping due to their impressive capabilities for automatic information extraction. However, the large volumes of parameters and calculations have compromised the efficiency of DL models in extracting landslide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of digital earth 2024-12, Vol.17 (1)
Hauptverfasser: Lu, Wei, Hu, Yunfeng, Shao, Wei, Wang, Hao, Zhang, Zuopei, Wang, Mingyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACTDeep learning (DL) models have been widely used for remote sensing-based landslide mapping due to their impressive capabilities for automatic information extraction. However, the large volumes of parameters and calculations have compromised the efficiency of DL models in extracting landslides from a large set of RS images. Lightweight convolutional neural networks (CNNs) exhibit promising feature representation abilities with fewer parameters. This study aims to introduce a new lightweight CNN called MS2LandsNet, designed to detect landslides with both high efficiency and accuracy. The MS2LandsNet consists of three down-sampling stages embedded with multi-scale feature fusion (MFF), aiming to decrease parameters while aggregating contextual features. Additionally, we incorporate multi-scale channel attention (MSCA) into MFF to improve performance. According to experimental results on three landslip datasets, MS2LandsNet obtains the highest F1 score of 85.90% and the highest IoU of 75.28%. Notably, MS2LandsNet accomplishes the resuts with the fewest parameters and the fastest inference speed, outperforming seven classical semantic segmentation models and three lightweight CNNs. The proposed lightweight model holds potential for application on a cloud computing platform for larger-scale landslide mapping tasks in future work.
ISSN:1753-8947
1753-8955
DOI:10.1080/17538947.2023.2300731